
Proceedings of TMCE 2020, 11-15 May, 2020, Dublin, Ireland, edited by I. Horváth and G. Keenaghan
 Organizing Committee of TMCE 2020, ISBN/EAN: 978-94-6384-131-3

 103

HOW CAN A SMART CYBER-PHYSICAL SYSTEM VALIDATE ITS RUN-TIME
ADAPTATION ACTIONS BEFORE AND AFTER EXECUTING THEM?

Jože Tavčar
Faculty pf Mechanical Engineering

University of Ljubljana
Slovenia

joze.tavcar@lecad.fs.uni-lj.si

Imre Horváth
Industrial Design Engineering
Delft University of Technology

The Netherlands
i.horvath@tudelft.nl

ABSTRACT

The time has come for engineered systems to behave
smartly. To this end, they must (i) collect data directly
from real-life processes, (ii) build situation
awareness, (iii) reason about their operational states,
(iv) determine the best servicing objectives, (v) plan
their run-time adaptation, and (vi) provide
dependable operations/services even under
dynamically changing circumstances. Engineers must
figure out how to design smart cyber-physical systems
(S-CPSs) for adaptation at run-time. Designing such
S-CPSs is a challenging task. S-CPSs should not draw
up only device run-time adaptation plans, but also
confirm their feasibility and efficiency. S-CPSs should
predict the physical and computational resources. The
theory and methodology behind smart systems is still
under development. This paper focuses on run-time
adaptation, provides an overview on extant research
efforts, and analyses the results published so far. The
literature informs about the fact that there is a need
for a meta-model of systems’ self-adaptation, which
might however be completely different depending on
the kind of systems and the applications. Therefore,
the paper proposes that managing self-adaptation
decomposes to four logical stages: (i) planning self-
adaptation, (ii) verification before self-adaptation,
(iii) operationalization of self-adaptation, and (iv)
validation of self-adaptation.

KEYWORDS

Smart cyber-physical systems, self-adaptation, pre-
adaptation self-verification, post-adaptation self-
validation, design approaches, design principles,
system development

1. INTRODUCTION

The paradigm of cyber-physical systems is rapidly
evolving [1]. Future cyber-physical systems will
exhibit significant differences not only in terms of
their functionalities and applications, but also in terms
of their implementation and management [2]. They
will behave smartly and purposefully, and manage
themselves quasi-autonomously [3] [4]. This rapid
evolution raises many questions concerning designing
for functionality, adaptability, and behavior, as well as
about the approaches of dynamically managing
complexity, dependability, and reliability [5] [6] [7].
This paper intends to contribute to the specific issue
of designing for adaptability, in particular run-time
‘design’ of self-adaptation [8]. In order to narrow
down the domain of discourse, only second-
generation CPSs are considered in our study [9].

Designing smart cyber-physical systems (S-CPSs) for
adaptation at run-time is a challenging task at least for
three reasons. First, S-CPSs should not only devise
run-time adaptation plans, but also confirm their
feasibility and efficiency [10] [11]. Second, S-CPSs
should predict the required physical and
computational resources based on service demands
and acquire them as needed for self-adaptation at run-
time [12] [13] [14]. Third, the underpinning theory
and development methodology of socially
smart/cognitive systems is still in its infancy [15] [16].
This paper focuses on the first issue, provides an
overview of extant research efforts, and analyses the
results published so far. The literature informs about
the fact that there is the need for a meta-model of
systems’ self-adaptation, which might however be
completely different depending on the kind of systems
and the applications [17] [18]. Therefore, the driving
hypothesis behind the background research has been

104 Jože Tavčar, Imre Horváth

that managing self-adaptation decomposes to four
logical (procedural) stages as shown in Figure 1, and
will be used as a conceptual reasoning model to be
tested in the rest of the paper. We propose referring to
this scheme as the generic process of supervised self-
adaptation (SSA).

The proposed reasoning model implies the need for
studying four specific run-time phenomena of smart
CPSs: (i) origination of objective- and situation-
sensitive plans and actions for behavioral self-
adaptation, (ii) verification of the self-adaptation plans
and actions before executing the adaptation, (iii)
realization of the intended behavioral self-adaptation,
and (iv) validation of the outcome and impacts of self-
adaptation after completing the adaptation. SSA is
assumed a recurrent system operation that occurs
multiple times (with various frequencies) and that may
lead to introducing changes in transient operational
states, rather than only in steady state system
situations.

Figure 1 The assumed generic process flow of supervised

self-adaptation. Pre-adaptation, self-verification,
and post-adaptation self-validation in the smart
CPS control loop.

The paper concentrates on two specific research
questions, namely: (i) how adaptation plans and
actions can be verified before their execution, and (ii)
how the results and impacts can be validated after the
execution of adaptation. However, in order to be able
to answer these context dependent issues, we must
first address a somewhat more general research
question, namely: (iii) how can S-CPSs adapt
themselves at run-time? Although researchers on self-

adaptation have established solid principles, such as
quiescence, MAPE, meta-requirements, and run-time
models, there is currently no comprehensive theory
that underpins self-adaptation, is the conclusion that
Weyns made [19]. An important challenge that
crosscuts the different waves will be developing
robust approaches and demonstrating their
applicability and value in practice. Essential to that
will be the gathering of empirical evidence based on
rigorous methods, in particular controlled experiments
and case studies [19].

Zheng et al. argued that existing formal
methodological techniques and simulation are
insufficient for supporting the development of entire
general-purpose CPS [20]. The current state of the
practice in CPS verification and validation remains an
ad-hoc trial and error process. There are still
significant gaps between the formal models of
computing and the formal models of physics that
underpin today’s CPS systems.

1.2 Self-verification and self-validation

In the above sub-section, three concepts have been
introduced: (i) run-time self-adaptation, (ii) self-
verification, and (iii) self-validation. They seem to be
important for general-purpose CPSs, and even more
for smart CPSs with the ability of SSA. Though these
terms are not brand new, several different
interpretations and operationalization are present in
the literature [20]. To reduce ambiguity, below we
elaborate on these terms and put them in the context
of this study.

Though the terms ‘verification’ and ‘validation’
frequently occur in system science and engineering
literature, ‘self-verification’ and ‘self-validation’
seem to be novel and under-elaborated concepts.
Verification and validation are two representative
approaches to justification, which may be based on
rational and empirical, and direct or indirect methods.
Justification strives after logical consistence, semantic
coherence, factual reliability, etc. The question
driving justification is whether the theoretical
fundamentals, conceptual framework, working
principle, and knowledge constituents provide
sufficient underpinning and/or framing for the
purpose. Verification generates indicators for
consistency, coherence, and reliability. In
engineering, a rather pragmatic interpretation of
verification is testing against requirements.

While verification refers to internal properness,
validation refers to appropriateness. In the tradition of
scientific inquiry, validation is a multi-faceted activity

HOW CAN A SMART CYBER-PHYSICAL SYSTEM VALIDATE ITS RUN-TIME ADAPTATION? 105

focusing on the confirmation of knowledge.
Validation is used to test and prove appropriateness in
a different context, for a larger population, under
specific conditions, as well as utility for a purpose in
some (application) context. In engineering, validation
is testing the fulfilment of the expected functionality.

With a view to their interconnected roles in
demonstrating properness and appropriateness,
verification and validation are inseparable. Likewise,
self-verification and self-validation play interrelated
roles in adaptation testing of CPSs. Self-V&V has
been envisaged as a repertoire of system abilities that
enables the system capable to eventually design and
complete all necessary verification and validation
tasks that are needed to ensure its dependable and
optimal operation [21]. Traditionally, systems for are
planned for adaptation in the functional design and/or
architectural design phases. Self-adaptable systems,
however, must be ‘designed’ by the system itself at
run-time (or, in certain specific cases, with the
assistance of system operators) [22]. As methods of
verification of embedded systems, the authors of the
above paper identified: (i) simulative verification, (ii)
emulative verification, and (iii) formal verification.
The run-time self-adaptation of smart cyber-physical
systems is still largely terra incognita, lacking
comprehensive theoretical and methodological
underpinning. A number of papers discuss the various
forms of verification and validation of self-tuning
(e.g., self-resilience), but much less the forms of self-
adaptation (structural, functional, behavioral). The
self-evolution of complicated engineered systems has
been recognized as an intellectual and technological
challenge, but relatively scarcely addressed and only
in non-generic cases from a methodological and
technical perspectives [23] [24].

2. SELF-ADAPTATION OF SMART
CYBER-PHYSICAL SYSTEMS

2.1. Previous work on theories and
principles of self-adaptation

The literature discusses many principles of self-
adaption depending on how it is operationalized
within the system. The principles opposing each other
define some sort of dimension, in which specific
solutions can be generated. The dimensions of the
juxtaposition principles are shown in Table 1.

The major issue is that the system should continue its
operation and servicing while also adapting in its
functionality and architecture at run-time. This means

that not only the introduction of the changes, but also
maintaining operational continuity is a concern,
though sometimes it is not explicitly considered. For
instance, Zhou, P. et al. differentiated between two
types of self-adaptation of CPS: (i) environment-
centered self-adaptation (for a proper interaction with
changing environment) and (ii) system-centered
adaptation (guaranteeing the dependability of the
cyber space) [6].

The efforts for making self-adaptation an engineering
reality got underway more than a decade ago.
Krupitzer, C. et al. published an overview of the
engineering approaches to self-adaptive systems.
They identified various characteristics of self-
adaptation (such as reason, level, time, technique, and
control) and developed a taxonomy based on these. In
addition, they conceptualized two generic constituents
of adaptive systems, namely, the adaptation logic
(AL) and the managed resources (hardware, software
and cyberware) [26]. The AL executes the MAPE-RL
functions (i.e. monitors the environment, analyses the
data for change, plans adaptation, controls the
execution of the adaptation, reasons in context, and
learns from adaptations).

In his paper overviewing the recent developments,
Weyns discussed the fact that, though researchers
have established solid principles in the field of self-
adaptation, such as quiescence, MAPE, meta-
requirements, and run-time models, there is still no
comprehensive theory that could underpin the
computational mechanisms of the self-adaptation of
complicated systems [19]. He explained the current
situation as an outcome of the different directions of
research and development. An important challenge
that crosscuts the different directions will be to
develop robust approaches and demonstrate their
applicability and value in practice. Essential to that

 Table 1: Juxtaposing the major aspects of self-adaptation

aspect of self-
adaptation

on the one
hand

on the other
hand

computational
enabler

model-based data-driven

organizational
construct

centralized decentralized

intensity of
agency

proactive reactive

criterion for
execution

performance-
based

task-based

resources
concerned

hardware
software and
cyberware

106 Jože Tavčar, Imre Horváth

will be the gathering of empirical evidence based on
rigorous methods, in particular controlled experiments
and case studies [19].

Pradhan et al. described the work on improving run-
time support for autonomous resilience via self-
reconfiguration [28]. Run-time infrastructure governs
self-reconfiguration mechanisms. The application of
adaptation methods begins with setting goals.

2.2. Model-based self-adaptation versus
data driven self-adaptation

One issue of self-adaptation is to derive metrics
criteria for and make decisions on adaptation. A
typical method of capturing the criteria and making
decisions is using system models that describe the ‘as-
is’ and the ‘to-be’ states. Other alternative is executing
policies and/or reasoning with objectives. Adaptation
may also be controlled by run-time acquired
operational or servicing data. Model-based adaptation
control must cope with operational dynamics that may
arise as a result of changes in system states or
environment states. Reasoning in context and learning
from the adaptation functions of MAPE-RL are seen
as options supporting dynamic functional,
architectural, and behavioral model management at
run-time.

In the case of model-based operation control, the first
issue is validating the system model itself. McCarl
discussed multiple issues in validating models and
proposed that model validation relates to its
application [29]. He also proposed considering three
categories of models, such as (i) exploratory models
(examining how phenomena enter into the formation
of reality), (ii) predictive models (forecasting the
consequences of decisions), and (iii) prescriptive
models (involving the solution of a specific decision
maker problem). These types of models can be
correlated with models that are needed for smart-
system operation.

Incki and Ari elaborated on the utilization of a model-
based run-time monitoring approach for providing
reliable service. Message sequence charts are used,
later allowing practitioners to express an application’s
expected behavior in terms of complex-event
processing patterns [30]. The presented approach
enables the non-intrusive monitoring of IoT behavior
at run-time. Perrouin et al. discussed that adaptive
CPS’s ability to evolve is limited to the addition,
update, or removal of adaptation rules or
reconfiguration scripts [31]. They suggest leveraging
recent advances in model-driven techniques to offer

an approach that supports the evolution of both
systems and their adaptation capabilities. The basic
idea is to consider the control loop itself as an adaptive
system. García-Valls et al. proposed a solution for
designing adaptive cyber-physical systems by using
parametric models that are verified as the system
operates, so that adaptation decisions are made based
on the timing requirements of each particular
adaptation event [32]. Their approach allows the
system to make timely adaptations that exploit the
potential parallelism of the software and its execution
over multicore processors.

2.3. Centralized self-adaptation versus
decentralized self-adaptation

Self-adaptation can happen according to a top-down
or a bottom-up control strategy. This results in a fully
centralized adaptation planning in the former case, and
in a fully decentralized adaptation planning in the
latter. In practice, various combinations of the top-
down and the bottom-up control strategies are applied.
For centralized self-adaptation, a selected arbiter
collects all the necessary data and knowledge from the
system components, solves the satisfiability (SAT)
problem, and reliably communicates the result back to
the components. Gerostathopoulos et al. identified two
forms of decentralized self-adaptation (DSA), namely:
(i). DSA with distributed consensus, and (ii) DSA with
no distributed consensus [33]. In the first case, each
component solves the SAT problem locally, based on
its local knowledge (local view of system state). The
results are then communicated to and agreed upon
between all components. In the second case, each
component solves SAT problem locally based on its
local knowledge, (local view of system state), without
requiring this knowledge to be synchronized across
nodes. This allows components even to keep their
autonomy detached from the network [33]. A
decentralized self-adaptation mechanism for service-
based applications was proposed by Nallur & Bahsoon
[34].

2.4. Proactive self-adaptation versus
reactive self-adaptation

From the perspective of control theory, open- and
closed-loop controlled systems can be differentiated.
Closed-loop controlled systems adapt themselves
based on the deviations observed in the output
parameters, and they are monitored either by
feedforward or feedback mechanisms. This type is
called reactive self-adaptation. Open-loop systems
monitor changes to input parameters in combination

HOW CAN A SMART CYBER-PHYSICAL SYSTEM VALIDATE ITS RUN-TIME ADAPTATION? 107

with (internal) operational parameters and adapt
operation based on forecasting the expected changes
in the output variables. This type is proactive self-
adaptation, which becomes complicated under
uncertainties concerning the input parameters and the
operational environment. The aim of proactive
adaptation is adapting before it becomes necessary, it
is based on prediction.

2.5. Hardware self-adaptation versus
software/ cyberware self-adaptation

The self-adaptation of the physical constituents and
the architecture as a whole of the system play a crucial
role in the case of each of the three sub-categories of
polymorphic systems. The action plan should take into
consideration the continuing operation of the
hardware components. Thus, adaptation plan
generation starts with creation of adaptation requests,
based on the relevant system states, events, and
situations.

Braberman et al. propose the MORPH reference
architecture, which allows both independent
reconfiguration and behavior adaptation [35]. The
architecture is structured in three main layers that sit
above the target system: Goal Management, Strategy
Management and Strategy Enactment. Orthogonal to
the three layers is the Common Knowledge
Repository. Each layer can be thought of as a
implementing a MAPE-K loop.

2.6. Main findings concerning the
principles of self-adaptation

Existing mainstream model checking techniques and
tools were not conceived for run-time usage; hence
they hardly meet the constraints imposed by on-the-
fly analysis in terms of execution time and memory
usage [36] [37].

According to Gerostathopoulos et al., failures may
appear when a self-adaptive CPS operates under
environment condition, for which they are not
specifically designed [33]. The homeostasis of CPS
was improved by introducing run-time changes to the
architecture-based self-adaptation strategies
according to environment stimuli. Four mechanisms
that reify the idea were introduced: (i) collaborative
sensing, (ii) faulty component isolation from
adaptation, (iii) enhancing mode switching, and (iv)
adjusting guards in mode switching.

Conclusions from Muccini et al. research on self-
adaptation: 64% of the studies apply adaptation at the
application layer and 24% at the middleware layer.

MAPE (Monitor-Analyse-Plan-Execute) is the
dominant adaptation mechanism (60%), followed by
agents and self-organization (both 29%) [38]. The
findings show that adaptation in CPS is a cross-layer
concern, and the promising solutions combine various
adaptation mechanisms within and across layers.

Klös, et al. extended the MAPE-K feedback loop
architecture by imposing a structure and requirements
on the knowledge base and by introducing a meta-
adaptation layer [3]. This enables the continuous
evaluation of the accuracy of previous adaptations,
learn new adaptation rules based on executable run-
time models, and verify the correctness of the
adaptation logic in the current system context.

3. ADAPTATION PLAN VERIFICATION
BY SMART CYBER-PHYSICAL
SYSTEMS

3.1. Objectives of pre-adaptation self-
verification

When the adaptation plans and action specifications
are available, their properness should be checked
before they are executed by the system. This
verification should (i) happen with minimal or zero
external influence, (ii) be completed in a time frame
determined by the system operation, (iii) be realized
by the system without restricting the actual operation,
and (iv) feed back to the adaptation planning
activities.

3.2. Possibilities for pre-adaptation self-
verification

Bianculli et al. introduced a general framework, called
Syntax-DrivEn inCrementAl veRification-SiDECAR,
for the definition of verification procedures, which are
made incremental by the framework itself [39].
Verification procedures are driven by the syntactic
structure of the system and encoded as semantic
attributes associated with the grammar.
Incrementalism is achieved by coupling the evaluation
of semantic attributes with an incremental parsing
technique.

Ghezzi et al. argued that there is still a serious
mismatch between verification and modern
development processes, which focus strongly on
agility and incremental, iterative development [40].
Verification must become agile, and seamless
introductions into agile processes must become
feasible. Verification-driven development and agile
verification can be achieved. Jiang et al. conducted a

108 Jože Tavčar, Imre Horváth

study on applying run-time verification to cooperate
with current decision support system (DSS) based on
real-time data [41].

A run-time verification technique is proposed and
formalized to strengthen the medical DSS. It combines
formal methods in software engineering and practice
guidelines in medicine to rigorously verify run-time
temporal properties automatically.

Pinisetty et al. introduced a method for predictive run-
time verification of timed properties, where the system
is not entirely a black-box, but something about its
behavior is known a priori. A priori knowledge about
the system’s behavior allows the verification monitor
to foresee the satisfaction (or violation) of the
monitored property [42]. In addition to providing a
conclusive verdict sooner, the verification monitor
also provides additional information such as the
minimum (maximum) time when the property can be
violated (satisfied) in the future.

Bauer et al. presented a run-time verification approach
for properties expressed either in linear time temporal
logic (LTL) or timed linear time temporal logic
(TLTL), suitable for monitoring discrete-time and
real-time systems, respectively [43]. For LTL, a
conceptually simple monitor generation procedure is
given, which is optimal in two respects: First, the size
of the generated deterministic monitor is minimal,
and, second, the monitor identifies a continuously
monitored trace as either satisfying or falsifying a
property as early as possible.

In order to prevent the occurrence of undesired
behavioral adaptations, a run-time correctness
verification approach was introduced by Cardozo et al.
This approach uses a symbolic execution engine to
reason about the system’s reachable states whenever
contexts are activated or deactivated [10]. Context
activation and deactivation requests are allowed
depending on the presence of erroneous states within
reachable states. Calinescu et al. discussed the
potential and challenges associated with the run-time
use of quantitative verification and model checking as
a way of obtaining dependable self-adaptive software
[44].

The main contribution of Filieri et al. is the description
of a mathematical framework for run-time efficient
probabilistic model checking. The approach statically
generates a set of verification conditions that can be
efficiently evaluated at run-time as soon as changes
occur [37]. The proposed approach also supports
sensitivity analysis, which enables reasoning about the

effects of changes and can drive effective adaptation
strategies. Their paper addresses this issue and focuses
on the perpetual satisfaction of non-functional
requirements, such as reliability or energy
consumption. Its main contribution is the description
of a mathematical framework for checking run-time
efficient probabilistic models. Our approach statically
generates a set of verification conditions that can be
efficiently evaluated at run-time as soon as changes
occur. The proposed approach also supports
sensitivity analysis, which enables reasoning about the
effects of changes and can drive effective adaptation
strategies

3.3. White spots and open issues

Though the idea of run-time verification is already
addressed from many perspectives in the literature, it
seems that it is used for largely different purposes and
in largely different manners. In certain cases it does
not serve as verification of the adaptation before it
occurs, but as a means to monitor the execution of
adaptation in run-time. There are cases when it is used
for the purpose of validation of the results of run-time
adaptation. For example, Mitsch and Platzer
introduced ModelPlex, which provides correctness
guarantees for CPS executions at run-time [45]. It
combines the offline verification of CPS models with
run-time validation of system executions for
compliance with the model. ModelPlex ensures in a
provably correct way that the verification results
obtained for the model apply to the actual system runs
by monitoring the behavior of the world for
compliance with the model. An additional
contribution is a systematic technique of automatically
synthesizing provably correct monitors from CPS
proofs in differential dynamic logic by a correct-by-
construction approach, leading to verifiably correct
run-time model validation.

Zheng et al. argued that existing formal method and
techniques simulation are insufficient for supporting
the development of entire general-purpose CPS [20].
The current state of practice in CPS verification and
validation remains an ad-hoc ‘trial and error’ process.
There are still significant gaps between the formal
models of computing and the formal models of
physics that underpin today’s CPS systems.

4. PROPOSAL FOR A COMPREHENSIVE
SELF-ADAPTATION STRATEGY FOR
SMART CYBER-PHYSICAL SYSTEMS

4.1. The overall reasoning model of

HOW CAN A SMART CYBER-PHYSICAL SYSTEM VALIDATE ITS RUN-TIME ADAPTATION? 109

verification and validation of self-
adaptation at run-time

Run-time verification and validation is split into four
phases for easier understanding as shown in Figure 1.
However, the listed activities are interconnected and
they are conducted as a constant information flow.
Run-time validation must change our mindset. We
must switch from traditional validation in the design
phase, where the most critical situations can be tested
case by case into the run-time domain, where
permanent monitoring and adaptations enable control
in several small steps.

Operational adaptation in the first loop and system
control mechanism adaptation in the second control
loop must be distinguished, as presented in Figure 1.
The first one responds to environment changes or
adapts the system to new goals. The adaptation in the
second loop updates the system – putting the new logic
into the system.

4.2. Adaptation planning at run-time

Figure 2 presents subtasks at the point of adaptation
planning. It is not a one-time activity, but a set of non-
stop executing activities. Environment and system
parameters are monitored at run-time. During system
design or later at system upgrades (second control
loop), the range of allowed parameter value is defined.
If the value of specific parameters is out of the normal
range, the system is switched to safe mode. Smart
CPSs are of different configurations and complexity.
For simplicity of understanding, we explain the
situation in environment or in system with parameters.

The third input into adaptation planning is a request
for adaptation. A trigger for adaptation can be: (i) a
request from the first control loop caused by

environment changes, (ii) a new system goal is
defined, (iii) the system configuration or reasoning
logic is updated. The input for adaptation is defined at
a high level – it does not include all the details of
settings that are necessary for achieving the goal.
Adaptation planning considers in real time the system
state (environment and system parameters), system
policy, and system knowledge. The adaptation
proposal must be feasible for adaptation in the target
system. The result is an adaptation plan that contains
all detailed system settings needed to achieve target
adaptation.

4.3. Pre-adaptation self-verification

Operations are adapted at the first level of the control
loop within the range of predefined limits. Data from
the adaptation plan, along with environment and
system parameters, are inserted into the system model.
If the results of the model simulation are consistent
with the adaptation proposal and system policy, the
adaptation plan is approved. Smart CPS could have
specific verification methods (Figure 3).

It must again be stressed that adaptation planning and
pre-adaptation verification is a continuous process.
Adaptation occurs in small incremental steps that
assure a smooth and controlled transition from one
state to new one.

A special case of adaptation is adaptation at the system
level, which means the system control mechanism or
system configuration is changed. Such adaptation
must be done with special care, while new control
rules can significantly change system behavior.

Figure 2 Adaptation planning at run-time

Figure 3 Pre-adaptation self-verification – first level of

control loop

110 Jože Tavčar, Imre Horváth

Option 1: Systemic checking of new system is needed
before adaptation implementation at the second
control loop. This verification is in some ways similar
to that in the design phases of product design. Critical
situations are checked for the allowed range of
environment and system parameters, which must be
done in the virtual world. The whole procedure can
take a long time, wherefore verification must be
conducted in several steps and in the idle periods when
computation capacity is available.

Option 2: Is radical system adaptation and systemic
checking in the whole range of parameters realistic?
How can we check models if the system model is
changed? It must always be adapted in incremental
steps.

For example: a new rule is added; all the previous
rules are still valid and checking must only be focused
on the new rule. The incremental approach enables
verification of all small adaptations with all four
phases of adaptation. The adaptation loop is at the
same time a learning loop, which in real time accepts
or refuses small changes at the second level of the
control loop. That also means the allowed range of
system and environment parameters can be
incrementally extended.

4.4. Operationalization of self-adaptation

Self-adaptation is conducted according to the
approved adaptation plan. However, adaptation and

system consistency checking as presented in Figures 3
and 4 are running concurrently. That means there are
two control levels; the first one is the pre-adaptation
verification and the second one is run-time
monitoring, and immediate switching of the system
back or into safe mode of operation if the system
parameters run out of allowed limits.

A realistic scenario includes smooth system
adaptation, but later changes of environment
parameters can cause the system into unpredicted
situation according to the existing model. Run-time
monitoring and immediate reaction are permanent
safeguards that assure reliable system operation.

4.5. Post-adaptation self-validation

The main objective of post-adaptation self-validation
is comparison between predicted model in pre-
adaptation and current system situation after
adaptation. Comparison results in valuable data for the
self-learning process. If the difference is small, the
system model is additionally confirmed. In the
opposite case, the system model is updated with a new
adaptation example (Figure 5).

Run-time monitoring assures safe operation and
enables the conduct of a learning loop even with
parameters values that have not been tested during the
system design phase. However, system evolution must
be done in several incremental steps. A larger number
of adaptation cycles with a predefined range of
parameters value improves the system’s knowledge
and consequently improves the prediction of system
behavior. With several small incremental steps, the

Figure 4 Pre-adaptation verification - second level of

control loop

Figure 5 Post-adaptation self-validation

HOW CAN A SMART CYBER-PHYSICAL SYSTEM VALIDATE ITS RUN-TIME ADAPTATION? 111

range of the system’s operation, structure, and
configuration can be expanded into a new mode of
operation that was unknown at the time of design.
Most examples from the literature refer to self-tuning
– the first level of control loop.

4.6. A demonstrative case study: Run-
time self-adaptation of a robotic
vacuum cleaner

Robot cleaners are currently quite popular
applications. Many people have already personal
experience with its usage. Therefore, it is used as a
case study of adaptation phases.

A) A robot cleaner without self-learning
capability

A robot has rules for operation that were defined
already in the design phase. It uses the same strategy
all the time and in any room. Rules for operation:

• If a barrier or a curb is detected in front of the robot,
go back by 50 cm, and turn right with a random
angle value between 30 and 60 degrees. Go
forward.

• If there is only 5% of energy in battery, go to the
docking station.

• If the robot is blocked (it cannot move further on),
it generates a warning sound and stops operating.

It is assumed that during long enough operation the
robot will clean all the room by randomly moving
around. Run-time monitoring is used to detect and
avoid barriers. Strategy of the robot is only pre-
defined reaction to typical situation in environment.
We do not classify this kind of robot as smart CPS.
According to the 4 phases recognized, there is no
adaptation planning and no pre-adaptation
verification. Post-validation is limited to run-time
monitoring and responses to the data from sensors.

B) A robot cleaner with self-learning capability

A self-learning robot cleaner has advanced room
awareness, reasoning, and cleaning path optimization.
Environment monitoring is permanently active that
assures robust and safe operation as described in
section A.

1. Adaptation planning

If the robot starts cleaning in a new, unknown room, it
first goes in a randomly selected direction. Adaptation
planning in the first control loop means cleaning path
planning by considering the situation in the room –
what has already been cleaned, where are the barriers

located, what is the room configuration, and what is a
useful cleaning strategy? If the smart robot can
recognize layouts from a previously cleaned room, the
learning curve is faster and cleaning more optimal.

2. Pre-adaptation verification

Smart robots do not constitute a safety-critical case.
The phases of adaptation planning and pre-adaptation
verification could be joined into a single phase. The
system collects data from actuators and sensors, and
then checks whether the hardware is ready and
whether there are barriers in the planned movement
path. The robot’s parameters must also be consistent
with system policy.

3. Operationalization of adaptation

Robot acceleration, movement, rotation, and cleaning
happens according to the adaptation plan. Moving
parameters enable safe stops in the event of barriers
and switching to safe mode operation in
unmanageable situations.

4. Post-adaptation validation

During post-adaptation validation, the room map
(environment model) is compared with the measured
one. New knowledge on the room configuration and
what has been already cleaned is stored in a system
database. New system knowledge is used for
adaptation planning in the next step.

4.7. The implemented learning loop

Smart robot cleaners are actually not terribly
demanding applications. In most cases they operate
only for an hour per day, meaning that there is enough
idle time for system upgrades – second control loop.
It could be am upgrade to system policy (for example:
maximum moving speed) or to the path generation
algorithm or even battery management. For run-time
adaptations, small incremental reasoning
improvements are only realistic if they are the result
of system operation analysis over a longer period of
time. That means a reasoning algorithm is upgraded
with a single additional rule. The effects of the
adaptation can be assessed in most cases only on the
basis of longer (several hours) device operation. If the
upgrade is assessed well, it is kept in the reasoning
algorithm; otherwise it is deleted.

Let us summarize the run-time adaptation approach:
adaptation steps for first-level or second-level
(learning loop) control loops must be incremental.
This means that run-time monitoring and control
measure shall have the capability to react in real time

112 Jože Tavčar, Imre Horváth

and avoid safety-critical situations. System capability
to operate in at least partly “unknown” circumstances
open the possibility of operating reliably in changing
environments, as well as enabling the self-learning
loop and, as a consequence, system self-evolution.

5. DISCUSSION

The paper’s title was formulated as a question. This
was done to indicate the authors’ explorative study.
Now the question is whether or not it is possible to
answer the question with a high degree of certainty.
Three research questions guided the presented study:
(i) what adaptation objectives are realistic for S-CPSs
and how they can adapt themselves in run-time, (ii) in
what forms can adaptation plans and actions manifest
and according to which principles can they be verified
before execution, and (iii) how can the results and
impacts of adaptation be validated after
operationalization and after multiple variant system
adaptations. One trivial finding of this paper is that
run-time self-adaptation is a complicated matter,
which should be approached in a reductionist manner.

Nevertheless, self-adaptation is seen as a complex of
four computational activities, namely: (i) planning
self-adaptation, (ii) verification of plan, (iii) execution
of self-adaptation, and (iv) validation of the outcomes.
As shown by the literature, there are many proposals
for completion of the four activities, but there was no
integral methodology proposed yet to embrace all of
them.

The proposed model towards run-time adaptation and
validation is based on incremental changes of
parameters and run-time monitoring. That means
modification is possible even outside the range of
predefined parameters, while the step backwards is
always possible. The approach works well if the
system behaves according to linear low. In the case,
that specific parameter setting can cause catastrophic
situation and even switching to safe mode of operation
cannot stabilize the system, the proposed approach
cannot be applied. Such situations must be avoided by
the allowed range of system parameters and the
system policy.

6. CONCLUSIONS

Smart CPSs are purpose-driven and context-
dependent behavior and reasoning that make
architectural and functional adaptation and evolution
possible. Smart CPSs cannot be validated with
conventional deterministic approaches. The
contribution of this paper manifests in a

comprehensive overview of the state of the art and a
working proposal towards run-time adaptation and
validation in four steps: (i) planning self-adaptation,
(ii) verification of plan, (iii) execution of self-
adaptation, and (iv) validation of the outcomes.
Validation was recognized as an open issue already in
the first generation of CPSs. A large number of states
cannot be checked in an acceptable time and cost
frame. Each realistic technical system operates in
unpredictable environment conditions. One solution is
run-time adaptation and validation. The paper’s
contribution works towards the design of smart cyber-
physical systems (S-CPSs) for adaptation at run-time.
The proposed model contains real-time data collecting
and building situational awareness. Run-time
adaptation planning is based on reasoning about the
system’s operational states and provides dependable
operations/services even under dynamically changing
circumstances.

The survey has shown a gap in advanced validation
methods, especially run-time validation, which could
be applied for smart CPSs. New methods and
approaches have been recognized that enable
validation of a higher level of adaptability, system and
environment awareness, self-control of constraints
and resources in real-time, and run-time validation.
The proposed model shows the direction in which
additional research must be conducted. The principals
for self-constraining must be developed and later
approved in practice.

ACKNOWLEDGMENTS

This work was supported by Slovenian Research
Agency – ARRS, grant number contract no. P2-0265.

REFERENCES

[1] Krämer, B.J. (2014). Evolution of cyber-physical
systems: A brief review. In: Applied Cyber-Physical
Systems. Springer, New York, NY. pp. 1-3.

[2] Horváth, I., Rusák, Z., & Li, Y. (2017). Order beyond
chaos: Introducing the notion of generation to
characterize the continuously evolving
implementations of cyber-physical systems. In:
Proceedings of the ASME 2017 International Design
Engineering Technical Conferences. ASME, pp. 1-14.

[3] Klös, V., Göthel, T., & Glesner, S. (2018). Runtime
management and quantitative evaluation of changing
system goals in complex autonomous systems. Journal
of Systems and Software, Vol. 144, pp. 314-327.

[4] Zambonelli, F., Bicocchi, N., Cabri, G., Leonardi, L.,
& Puviani, M. (2011). On self-adaptation, self-

HOW CAN A SMART CYBER-PHYSICAL SYSTEM VALIDATE ITS RUN-TIME ADAPTATION? 113

expression, and self-awareness in autonomic service
component ensembles. In: Proceedings of the 5th
Conference on Self-Adaptive and Self-Organizing
Systems Workshops, IEEE, pp. 108-113.

[5] Kramer, J., & Magee, J. (2007). Self-managed
systems: An architectural challenge. In: Proceedings
of the Future of Software Engineering Conference.
IEEE Computer Society, pp. 259-268.

[6] Zhou, P., Zuo, D., Hou, K.M., Zhang, Z., Dong, J., Li,
J., & Zhou, H.A. (2019). Comprehensive
technological survey on the dependable self-
management CPS: From self-adaptive architecture to
self-management strategies. Sensors, Vol. 19, No. 5,
1033, pp. 1-58.

[7] Dai, W., Dubinin, V.N., Christensen, J.H., Vyatkin,
V., & Guan, X. (2017). Toward self-manageable and
adaptive industrial cyber-physical systems with
knowledge-driven autonomic service management.
IEEE Transactions on Industrial Informatics, Vol. 13,
No. 2, pp. 725-736.

[8] Gerostathopoulos, I., Bures, T., Hnetynka, P.,
Keznikl, J., Kit, M., Plasil, F., & Plouzeau, N. (2016).
Self-adaptation in software-intensive cyber-physical
systems: From system goals to architecture
configurations. Journal of Systems and Software, Vol.
122, pp. 378-397.

[9] Tavčar J. and Horváth I. (2019). A Review of the
Principles of Designing Smart Cyber-Physical
Systems for Run-Time Adaptation: Learned Lessons
and Open Issues, IEEE Transactions on systems, Man,
and Cybernetics, Systems. Vol. 49, No. 1, pp. 145–
158.

[10] Cardozo, N., Christophe, L., De Roover, C., & De
Meuter, W. (2014). Run-time validation of behavioral
adaptations. In: Proceedings of 6th International
Workshop on Context-Oriented Programming, ACM,
pp. 1-5.

[11] Horváth, I., Suárez Rivero, J.P., & Hernández
Castellano, P.M. (2019). Editorial: Past, present and
future of behaviourally adaptive engineered systems.
Journal of Integrated Design & Process Science, Vol.
23, No. 1, pp. 1-15.

[12] Spinner, S., Casale, G., Brosig, F., & Kounev, S.
(2015). Evaluating approaches to resource demand
estimation. Performance Evaluation, Vol. 92, pp. 51-
71.

[13] Nayak, A., Reyes Levalle, R., Lee, S., & Nof, S.Y.
(2016). Resource sharing in cyber-physical systems:
modelling framework and case studies. International
Journal of Production Research, Vol. 54, No. 23, pp.
6969-6983.

[14] Huber, N., Brosig, F., & Kounev, S. (2011). Model-
based self-adaptive resource allocation in virtualized

environments. In: Proceedings of the 6th International
Symposium on Software Engineering for Adaptive
and Self-Managing Systems, ACM, pp. 90-99.

[15] Bordel, B., Alcarria, R., Pérez-Jiménez, M., Robles,
T., Martín, D., & de Rivera, D.S. (2015). Building
smart adaptable cyber-physical systems: Definitions,
classification and elements. In: Intern. Conf. on
Ubiquitous Computing and Ambient Intelligence.
Springer, Cham. pp. 144-149.

[16] Jones, K.H. (2014). Engineering antifragile systems:
A change in design philosophy. Procedia computer
science, Vol. 32, pp. 870-875.

[17] Sabatucci, L., Seidita, V., & Cossentino, M. (2018).
The four types of self-adaptive systems: A metamodel.
In: Proceedings of the Inter. Conf. on Intelligent
Interactive Multimedia Systems and Services.
Springer, Cham. pp. 440-450.

[18] Huber, N., van Hoorn, A., Koziolek, A., Brosig, F., &
Kounev, S. (2014). Modeling run-time adaptation at
the system architecture level in dynamic service-
oriented environments. Service Oriented Computing
and Applications, Vol. 8, No. 1, pp. 73-89.

[19] Weyns, D. (2017). Software engineering of self-
adaptive systems: An organised tour and future
challenges. Handbook of Software Engineering.
Springer.

[20] Zheng, X., Julien, C., Kim, M., & Khurshid, S. (2017).
Perceptions on the state of the art in verification and
validation in cyber-physical systems, IEEE Systems
Journal, Vol. 11, No. 4, pp. 2614-2627.

[21] Drechsler, R., Fränzle, M., & Wille, R. (2015).
Envisioning self-verification of electronic systems. In:
Proceedings of the 10th International Symposium on
Reconfigurable Communication-centric Systems-on-
Chip, IEEE, pp. 1-6.

[22] Musil, A., Musil, J., Weyns, D., Bures, T., Muccini,
H., & Sharaf, M. (2017). Patterns for self-adaptation
in cyber-physical systems. In: Multi-disciplinary
engineering for cyber-physical production systems,
Springer, Cham, pp. 331-368.

[23] Raichman, N., Gabay, T., Katsir, Y., Shapira, Y., &
Ben-Jacob, E. (2004). Engineered self-organization in
natural and man-made systems. In: Continuum
Models and Discrete Systems. NATO Science Series
II, vol 158. Springer, Dordrecht, pp. 187-205.

[24] Shin, M., Mun, J., & Jung, M. (2009). Self-evolution
framework of manufacturing systems based on fractal
organization. Computers & Industrial Engineering,
Vol. 56, No. 3, pp. 1029-1039.

[26] Krupitzer, C., Roth, F.M., VanSyckel, S., Schiele, G.,
& Becker, C. (2015). A survey on engineering
approaches for self-adaptive systems. Pervasive and

114 Jože Tavčar, Imre Horváth

Mobile Computing, Vol. 17, pp. 184-206.

[28] Pradhan, S., Dubey, A., Levendovszky, T., Kumar,
P.S., Emfinger, W.A., Balasubramanian, D., Otte, W.
& Karsai, G. (2016). Achieving resilience in
distributed software systems via self-reconfiguration,
The Journal of Systems and Software, Vol. 122, pp.
344-363.

[29] McCarl, B. A. (1984). Model Validation: An
Overview with some Emphasis on Risk Models.
Review of Marketing and Agricultural Economics,
Vol. 52, No. 3, pp. 1-21.

[30] Incki, K., and Ari, I. (2018). Model-Based Runtime
Monitoring of Smart City Systems, Procedia
Computer Science, Vol. 134, pp. 75-82.

[31] Perrouin, G.M., Brice Chauvel, F., Fleurey, F., Klein,
J., Le Traon, Y., Barais, O., & Jezequel, J.-M. (2012).
Towards flexible evolution of dynamically adaptive
systems. In: Proceedings of the 34th Intern.
Conference on Software Engineering, Zurich, pp.
1353-1356.

[32] García-Valls, M., Perez-Palacin, D., & Mirandola, R.
(2018). Pragmatic cyber physical systems design
based on parametric models. Journal of Systems and
Software, Vol. 144, pp. 559-572.

[33] Gerostathopoulos, I., Skoda, D., Plasil, F., Bures, T.,
& Knauss, A. (2019). Tuning self-adaptation in cyber-
physical systems through architectural homeostasis.
Journal of Systems and Software, Vol. 148, pp. 37-55.

[34] Nallur, V., & Bahsoon, R. (2013). A decentralized
self-adaptation mechanism for service-based
applications in the cloud. IEEE Transactions on
Software Engineering, Vol. 39, No. 5, 591-612.

[35] Braberman, V., D'Ippolito, N., Kramer, J., Sykes, D.,
& Uchitel, S. (2015). Morph: A reference architecture
for configuration and behaviour self-adaptation. In:
Proceedings of the 1st International Workshop on
Control Theory for Software Engineering, ACM. pp.
9-16.

[36] Tavčar, J., Duhovnik, J., and Horváth, I. (2019). From
Validation of Medical Devices towards Validation of
Adaptive Cyber-Physical Systems, Journal of
Integrated Design & Process Science, Vol. 23, No. 1,
pp. 37-59.

[37] Filieri, A., Tamburrelli, G., & Ghezzi, C. (2016).
Supporting self-adaptation via quantitative
verification and sensitivity analysis at run time. IEEE
Transactions on Software Engineering, Vol. 42, No. 1,
pp. 75-99.

[38] Muccini, H., Sharaf, M., & Weyns, D. (2016). Self-
adaptation for cyber-physical systems: A systematic
literature review, In: Proceedings of SEAMS’16,
Austin, TX, pp. 75-81.

[39] Bianculli, D., Filieri, A., Ghezzi, C., & Mandrioli, D.
(2013). A syntactic-semantic approach to incremental
verification. arXiv preprint arXiv:1304.8034, pp. 1-
22.

[40] Ghezzi C., Sharifloo A.M., Menghi C. (2013).
Towards agile verification. In: Perspectives on the
Future of Software Engineering. Springer, Berlin,
Heidelberg, pp. 31-47.

[41] Jiang, Y., Song, H., Wang, R., Gu, M., Sun, J., & Sha,
L. (2017). Data-centered runtime verification of
wireless medical cyber-physical system. IEEE
Transactions on Industrial Informatics, Vol. 13, No. 4,
pp. 1900-1909.

[42] Pinisetty, S., Jéron, T., Tripakis, S., Falcone, Y.,
Marchand, H., & Preoteasa, V. (2017). Predictive
runtime verification of timed properties. Journal of
Systems and Software, Vol. 132, pp. 353-365.

[43] Bauer, A., Leucker, M. & Schallhart, C. (2011).
Runtime verification for LTL and TLTL, ACM
Transactions on Software Engineering and
Methodology, Vol. 20, No. 4, p. 14, pp. 1-64.

[44] Calinescu, R., Ghezzi, C., Kwiatkowska, M., &
Mirandola, R. (2012). Self-adaptive software needs
quantitative verification at runtime. Communications
of the ACM, Vol. 55, No. 9, pp. 69-77.

[45] Mitsch, S., & Platzer, A. (2016). ModelPlex:
Verified runtime validation of verified cyber-
physical system models. Formal Methods in
System Design, Vol. 49, No. 1-2, pp. 33-74.

