TMCE 1998 - Table of Contents

Foreword	1
Table of Contents	2
FW - Frameworks for Concurrent Engineering	6
Gimenez, C. and Telles, G. N. (BR) Global Simultaneous Engineering	6
<i>Rohatynski, R. (P)</i> Human Oriented Approach to Computer Support for Concurrent Engineering in Distributed Enterprises	15
<i>Garrido, J. (E) Marin, R. (E) and Downie, B. R (USA):</i> Concurrent Engineering Framework to Develop Industrial Automatization Systems Based on STEP	28
<i>Price, L. C. (UK)</i> Quality Function Deployment (QFD) - An Alternative Customer Focused Approach	37
ME – Management Issues in Concurrent Engineering	53
Gatzen, H. H. and Toenshoff, H. K. (DE) Risk Management and Product Integrity – A Simple Approach to Concurrent Engineering	53
<i>Yazdani, B. and Holmes, C. (UK)</i> Appraisal Methods in a Concurrent Engineering Environment	58
<i>Abdul-Wahab, D. and Taleb-Bendiab, A. (UK)</i> Introduction of Enabling Technologies to Support the Virtual New Product Development Activities: A Conceptual Framework	65
<i>Kamara, J. M., Anumba, C. J. and Evbuomwan, N. F. O. (UK)</i> Tools for Client Requirements Processing in Concurrent Life- Cycle Design and Construction	80
PD - Global Product Data Management	91
Baxter, J. E., Henson, B. W. and Juster, N. P. (UK) Multiple Viewpoint Support for the Product Data Management of Complex Assemblies	91
Krause, FL. and Doblies, M. (D) Global Product Data Management	101
Vergeest, J. S. M. and Horváth, I. (NL) GEOS-Based Analysis to Determine The Feasibility of Engineering Data Sharing	109

Al-Ashaab, A. H. S. and Ruiz, S. R. (MX) Using a PDM as a Tool to Support a Concurrent Engineering	
Application in a Mexican Company	118
IDM – Integrated Design Methods	123
Adachi, E. (J) Extensive Satisfactory Design Method for Actual Product Designs	123
Duckworth, A. P., Baines, R. W. and Taleb-Bendiab, A. (UK) An Eco-Design Framework for Small and Medium Sized Manufacturing Enterprises	134
Santo-Reyes, D. and Lawlor-Wright, T. (UK) A Structured Approach to Successful Design for the Environment	144
<i>Woodcock, A. and Flyte, M. G. (UK)</i> Supporting the Integration of Ergonomics in an Engineering Design Environment	154
DM - Decision Making in Concurrent Engineering	169
Borg, J. C. (M) and Yan, X. T. (UK): Design Decision Consequences: Key to "Design for Multi-X" Support	169
<i>Medland, A. J. (UK)</i> Decision Based Communications in Design	185
Matta, N., Ros, C. and Corby, O. (F) A Generic Library to Guide Decision Making in Concurrent Engineering	192
Hague, M. J. and Taleb-Bendiab, A. (UK) Co-Design: Design Decision Support System	???
VT - Virtual Technologies for Concurrent Engineering	
Horváth, I. (NL), Kuczogi, Gy. (NL) and Staub, G. (D) Spatial Behavioural Simulation of Mechanical Objects	
Ottosson, S. (S) Virtual Reality in Product Development	
Gomes, C. P. R., Feijó, B., Cerqueira, R. F. de G. and Ierusalimschy, R. (BR) Reactivity and Pro-Activeness in Virtual Prototyping	

Tangelder, J. W. H., Vergeest, J. S. M. van den Belt, H. T. and Owermars, M. H. (NL) Producing Physical Prototypes Using a Sculpturing Robot

ID - Intelligent Design Support Systems

Chuang, W. K. and Esat, I. I. (UK) Intelligent Engineering Design Support System

Cointe, Ch. and Matta, N. (F) Multi-Agents System To Support Decision Making in Concurrent Engineering

Esat, I. I. (UK) Geometrical Interpretation and Construction of Multi Layered Perceptrons

Ohkubo, S. and Dissanayake, K. (J) An Intelligent Optimum Design Method for Structural Systems Dealing with Multiple Objectives and Fuzziness

AD - Design for Assembly and Disassembly

Sousa, A. G., Forcellini, F. A. and Back, N. (BR) Design for Assembly within the Conceptual Design Phase

Dalgleish, G. F., Swift, K. G., Barnes, C. J., Jared, G. E. M. and Tate, S. J. (UK) Computer Support for Proactive DFA

Srinivasan, H. and Gadh, R. (USA) A Methodology to Design for Selective Disassembly

Holmes, C. and Yazdani, B.(UK) The Role of Staged Data Release in a Concurrent Engineering Environment

CV - Control and Visualization of Engineering Processes

Katai, F., Yoon, T. S., Tanaka, H. and Lu, M. L. (J) Domain System Models and Concurrent Engineering

Brissaud, D. and Blondaz, L. (F) Feed-back to Design from Knowledge on Process Planning by Indicators

Wiegers, T. and Knoop, W. G. (NL) Visualisation of Engineering Progress to Support Monitoring and Control of Design Processes

Cooper, S. J. and Taleb-Bendiab, A. (UK) A High-Level Control Mechanism for Managing Conflict Resolution in Concurrent Product Design

EI - Education for Integrated Product Development

Vajna, S. and Burchardt, C. (D) Integrated Product Development Curriculum *Björk, E. (S)* Industrial Product Development Projects in University Environment

van Kollenburg, P. A. M. and Punt, G. (NL) Education in Concurrent Engineering is a Must

FT - Feature Technology in Concurrent Engineering

De Martino, T., Falcidieno, B. and Giannini, F. (I) Integrated Feature-based Modelling in Concurrent Engineering

Horváth, I. and Vergeest, J. S. M. (NL) Theorical Fundamentals of Natural Representation of Shapes Generated with Gestural Devices

Sharmazanashvili, A. N. and Megrelishvili, L. (G) Feature-Based Approach in CAD/CAM/CNC Integration

Gayretli', A. and Abdalla, H. S. (UK) A Knowledge-Based System for Manufacturing Process Optimisation

ET – Enabling Technologies for Concurrent Engineering

Woodcock A. and Scrivener, S. A. R. (UK) A Critical Review of the Application of CSCW in the Product Design Life-cycle: Past, Present and Future

Hanneghan, M., Merabti, M. and Colquhoun, G. (UK) CONCERT: A Middleware-Based Support Environment for Concurrent Engineering

Williams, M. J. and Taleb-Bendiab, A. (UK) Software Support for Agile Manufacturing Systems and Virtual Enterprises Through the Use of Multi-Agent Systems

Falkenberg, A. (D) Parallel Synthesis using Genetic Algorithms in a Parallel Workstation Cluster

Author index